
Introduction to DataBases

Albert Bifet (course author)
Marie Al-Ghossein (class responsible)

Albert Bifet

• Professor at Telecom ParisTech

• Teaching at Telecom ParisTech and Ecole Polytechnique

• Worked at Yahoo Labs, Huawei, University of Waikato

• Doing Research in

• Data Stream Mining, Machine Learning, Artificial Intelligence

• Leading Open Source Projects

• MOA, Apache SAMOA, StreamDM

Marie Al-Ghossein

• Postdoctoral researcher at Telecom ParisTech

• Research in data mining and machine learning for
recommender systems

Course

• Introduction to Databases and Relational Model

• Relational Algebra

• SQL, Views and Updates

• Functional Dependencies and Normalization

• E/R Design

Labs: Jupyter

• Jupyter notebooks are interactive shells
which save output in a nice notebook
format
• Notebooks will be in python
• Lab 1: Functional Dependencies
• Lab 2: SQL
• Lab 3: SQL

Resources

• Website

http://perso.telecom-paristech.fr/malghossein/sd202

• MOOC Videos

• References on the Website

Databases

Data-driven Society

Big Data

All business manage data

All business manage data

Data-intensive Applications

• Store data (databases)

• Speed up reads, remembering results (caches)

• Search data by keywords (search index)

• Send messages to another process asynchronously
(stream application)

• Periodically crunch a large amount of accumulated data
(batch processing)

Popular SQL Databases

• Open Source Databases

• MySQL

• PostgreSQL

• MariaDB

• Commercial Databases

• Oracle 12c

• Microsoft SQL Server

• IBM DB2

• SAP Hana

Small Data

• SQLite is a self-contained, high-reliability, embedded, full-
featured, public-domain, SQL database engine.

• SQLite is the most used database engine in the world

• SQLite competes with fopen().

Let’s build a database!

Simplest Database

#!/bin/bash

db_set (){

echo "$1,$2" >> database

}

db_get (){

grep "^$1," database | sed -e "s/^$1,//" | tail -n 1

}

Simplest Database

db_set 1324 ‘John Doe, Rue Barrault, Paris’

db_set 4324 ‘Paul Ryan, Avenue Italie, Paris’

db_get 4324

Paul Ryan, Avenue Italie, Paris

What is missing?

Database Indexing

Database Index
• A

• Large binary search trees can be divided into “pages”

Database Index
• A

• B-Trees are balanced search trees designed to work
on disks and other storage devices

Motivation

B-Tree is a data structure that makes
it possible to

• search

• update

a large file with guaranteed
efficiency, in time O(lg(n))

Motivation
The origin of the name “B-Tree” is unknown:

• Balanced, Broad, Bushy, Boeing, Bayer

• Tr

Definition (Knuth)
• A B-tree of minimum degree t is a tree that satisfies:

• Every node has at most 2t children

• Every node, except for the root and the leaves, has at
least t children

• The root has at least 2 children (unless it is a leaf)

• All leaves appear on the same level, and carry no
information

• A non leaf node with k children contains k-1 keys

2-3-4 Tree
• A B-tree of minimum degree t=2 is a tree that satisfies:

• Every node has at most 4 children

• Every node, except for the root and the leaves, has at
least 2 children

• The root has at least 2 children (unless it is a leaf)

• All leaves appear on the same level, and carry no
information

• A non leaf node with k children contains k-1 keys

B-Tree Operations
• Search: O(t logt n)

• Insert: if a node gets too big, we split it into two nodes

• Delete: if a node gets too small, we combine two
nodes

Balance is achieved from the top of the tree

• since the height is only modified when the root
splits or merges

Operation Costs

Search
• Form a simple path downward from the root of the tree

Search
• Form a simple path downward from the root of the tree

• Recursively, starting at the root

• Look for the appropriate position in the node

• if the key is found, return the key

• else

• if the node is a leaf, return NIL

• else continue recursively checking the appropriate
child

Search
• Form a simple path downward from the root of the tree

Insertion
• Search from the root the proper leaf for insertion

• Do insertion

• If the leaf is too large:
overflow: redistribution of keys to restore balance

• Split the leaf in two and put the middle key in the parent
node

• Recursively split parents, putting an additional key in the
parent node, until there is no need to split or we reach
the root. If the node has no parent (root), create a new
root above the node

Insertion (337)

=>

Insertion (071)

=>

Deletion
• A search proceeds from the root to locate the

proper node

• If the key resides in a leaf, remove it

• If the key resides in a non-leaf node

• an adjacent key (previous key or next key) is
found and swapped into the vacated position

• Remove the swapped key stored at a leaf

Deletion (337)

=>

•

Deletion (067)

=>

Deletion
• If the node has not enough keys

underflow: redistribution of keys to restore
balance,

• Keys are obtained from a neighbouring
subtrees if it exists and if this does not cause
underflow

• If this is not possible, concatenation
(inverse of splitting)

•

Deletion (067)

=>

•

Deletion (067)

=> =>

Applications

• Databases

• Filesystems

• File indexes

B-Tree Summary
• Balanced Tree designed to work with storage devices

• Search, Update in time O(lg(n))

• Insert: if a node gets too big, we split it into two nodes

• Delete: if a node gets too small, we combine two nodes

Balance is achieved from the top of the tree

• since the height is only modified when the root splits
or merges

Exercise
Insert the following elements in a 2-3-4 tree:

6 10 15 4 13 14 7 3 8 5 9 11 12

What is missing?

DBMS

DBMS

• A Database Management System (DBMS) is a software
package designed to store and manage databases

• Data independence and efficient access.

• Reduced application development time.

• Data integrity and security.

• Uniform data administration.

• Concurrent access, recovery from crashes.

Spreadsheet

Data Models

• A data model is a collection of concepts for describing
data.

• A schema is a description of a particular collection of data,
using the a given data model.

• The relational model of data is the most widely used model
today.

• Main concept: relation, basically a table with rows

and columns.

• Every relation has a schema, which describes the

columns, or fields.

Database Management Systems, R. Ramakrishnan and J. Gehrke 48

Example Instance of Students
Relation

sid name login age gpa
53666 Jones jones@cs 18 3.4
53688 Smith smith@eecs 18 3.2
53650 Smith smith@math 19 3.8

Levels of Abstraction

• Many views, single conceptual
(logical) schema and physical
schema.

• Views describe how users see

the data.

• Conceptual schema defines

logical structure

• Physical schema describes the

files and indexes used.

☛ Schemas are defined using DDL; data is modified/queried using DML.

Physical Schema

Conceptual Schema

View 1 View 2 View 3

Example: University Database

• Conceptual schema:

 Students(sid: string, name: string, login: string,
 age: integer, gpa:real)
 Courses(cid: string, cname:string, credits:integer)
 Enrolled(sid:string, cid:string, grade:string)

• Physical schema:

• Relations stored as unordered files.

• Index on first column of Students.

• External Schema (View):

 Course_info(cid:string,enrollment:integer)

Data Independence

• Applications insulated from how data is structured and
stored.

• Logical data independence: Protection from changes in
logical structure of data.

• Physical data independence: Protection from changes in
physical structure of data.
☛ One of the most important benefits of using a DBMS!

Concurrency Control

• Concurrent execution of user programs is essential for
good DBMS performance.

• Because disk accesses are frequent, and relatively

slow, it is important to keep the cpu humming by
working on several user programs concurrently.

• Interleaving actions of different user programs can lead to
inconsistency: e.g., check is cleared while account
balance is being computed.

• DBMS ensures such problems don’t arise: users can
pretend they are using a single-user system.

Transaction: An Execution of a DB
Program

• Key concept is transaction, which is an atomic sequence of
database actions (reads/writes).

• Each transaction, executed completely, must leave the DB in a
consistent state if DB is consistent when the transaction begins.

• Users can specify some simple integrity constraints on

the data, and the DBMS will enforce these constraints.

• Beyond this, the DBMS does not really understand the

semantics of the data. (e.g., it does not understand
how the interest on a bank account is computed).

• Thus, ensuring that a transaction (run alone) preserves
consistency is ultimately the user’s responsibility!

Scheduling Concurrent
Transactions

• DBMS ensures that execution of {T1, ... , Tn} is equivalent to
some serial execution T1’ ... Tn’.

• Before reading/writing an object, a transaction requests

a lock on the object, and waits till the DBMS gives it the
lock. All locks are released at the end of the
transaction. (Strict 2PL locking protocol.)

• Idea: If an action of Ti (say, writing X) affects Tj (which
perhaps reads X), one of them, say Ti, will obtain the
lock on X first and Tj is forced to wait until Ti completes;
this effectively orders the transactions.

• What if Tj already has a lock on Y and Ti later requests a
lock on Y? (Deadlock!) Ti or Tj is aborted and restarted!

Relational Model

Database Management Systems, R. Ramakrishnan and J. Gehrke 56

Relational Database: Definitions

❖ Relational database: a set of relations
❖ Relation: made up of 2 parts:

– Instance : a table, with rows and columns.  
#Rows = cardinality, #fields = degree / arity.

– Schema : specifies name of relation, plus name and
type of each column.
◆ E.G. Students(sid: string, name: string, login: string,

age: integer, gpa: real).
❖ Can think of a relation as a set of rows or tuples

(i.e., all rows are distinct).

Database Management Systems, R. Ramakrishnan and J. Gehrke 57

Example Instance of Students
Relation

sid name login age gpa
53666 Jones jones@cs 18 3.4
53688 Smith smith@eecs 18 3.2
53650 Smith smith@math 19 3.8

❖ Cardinality = 3, degree = 5, all rows distinct
❖ Do all columns in a relation instance have to
 be distinct?

Database Management Systems, R. Ramakrishnan and J. Gehrke 58

Relational Query Languages

❖ A major strength of the relational model:
supports simple, powerful querying of data.

❖ Queries can be written intuitively, and the DBMS
is responsible for efficient evaluation.
– The key: precise semantics for relational queries.
– Allows the optimizer to extensively re-order

operations, and still ensure that the answer does not
change.

Database Management Systems, R. Ramakrishnan and J. Gehrke 59

The SQL Query Language

❖ Developed by IBM (system R) in the 1970s
❖ Need for a standard since it is used by many

vendors
❖ Standards:

– SQL-86
– SQL-89 (minor revision)
– SQL-92 (major revision, current standard)
– SQL-99 (major extensions)

Database Management Systems, R. Ramakrishnan and J. Gehrke 60

The SQL Query Language

❖ To find all 18 year old students, we can write:

SELECT *
FROM Students S
WHERE S.age=18

•To find just names and logins, replace the first line:

SELECT S.name, S.login

sid name login age gpa

53666 Jones jones@cs 18 3.4

53688 Smith smith@ee 18 3.2

Database Management Systems, R. Ramakrishnan and J. Gehrke 61

 Querying Multiple Relations
❖ What does the following query compute?

SELECT S.name, E.cid
FROM Students S, Enrolled E
WHERE S.sid=E.sid AND E.grade=“A”

S.name E.cid
Smith Topology112

sid cid grade
53831 Carnatic101 C
53831 Reggae203 B
53650 Topology112 A
53666 History105 B

Given the following instance of
Enrolled (is this possible if the
DBMS ensures referential
integrity?):

we get:

Database Management Systems, R. Ramakrishnan and J. Gehrke 62

Creating Relations in SQL
❖ Creates the Students

relation. Observe that the
type (domain) of each
field is specified, and
enforced by the DBMS
whenever tuples are
added or modified.

❖ As another example, the
Enrolled table holds
information about courses
that students take.

CREATE TABLE Students
 (sid: CHAR(20),
 name: CHAR(20),
 login: CHAR(10),
 age: INTEGER,
 gpa: REAL)

CREATE TABLE Enrolled
 (sid: CHAR(20),
 cid: CHAR(20),
 grade: CHAR(2))

Database Management Systems, R. Ramakrishnan and J. Gehrke 63

Destroying and Altering Relations

❖ Destroys the relation Students. The schema
information and the tuples are deleted.

DROP TABLE Students

❖ The schema of Students is altered by adding a
new field; every tuple in the current instance is
extended with a null value in the new field.

ALTER TABLE Students
 ADD COLUMN firstYear: integer

Database Management Systems, R. Ramakrishnan and J. Gehrke 64

Adding and Deleting Tuples

❖ Can insert a single tuple using:

INSERT INTO Students (sid, name, login, age, gpa)
VALUES (53688, ‘Smith’, ‘smith@ee’, 18, 3.2)

❖ Can delete all tuples satisfying some condition
(e.g., name = Smith):

DELETE
FROM Students S
WHERE S.name = ‘Smith’

☛ Powerful variants of these commands are available; more later!

Database Management Systems, R. Ramakrishnan and J. Gehrke 65

Integrity Constraints (ICs)
❖ IC: condition that must be true for any instance of

the database; e.g., domain constraints.
– ICs are specified when schema is defined.
– ICs are checked when relations are modified.

❖ A legal instance of a relation is one that satisfies all
specified ICs.
– DBMS should not allow illegal instances.

❖ If the DBMS checks ICs, stored data is more faithful
to real-world meaning.
– Avoids data entry errors, too!

Database Management Systems, R. Ramakrishnan and J. Gehrke 66

Primary Key Constraints

❖ A set of fields is a key for a relation if :
1. No two distinct tuples can have same values in all

key fields, and
2. This is not true for any subset of the key.
– Part 2 false? A superkey.
– If there’s >1 key for a relation, one of the keys is

chosen (by DBA) to be the primary key.
❖ E.g., sid is a key for Students. (What about

name?) The set {sid, gpa} is a superkey.

Database Management Systems, R. Ramakrishnan and J. Gehrke 67

Foreign Keys, Referential Integrity

❖ Foreign key : Set of fields in one relation that is used to
`refer’ to a tuple in another relation. (Must
correspond to primary key of the second relation.)
Like a `logical pointer’.

❖ E.g. sid is a foreign key referring to Students:
– Enrolled(sid: string, cid: string, grade: string)
– If all foreign key constraints are enforced, referential

integrity is achieved, i.e., no dangling references.
– Can you name a data model w/o referential integrity?

◆ Links in HTML!

Database Management Systems, R. Ramakrishnan and J. Gehrke 68

Enforcing Referential Integrity
❖ Consider Students and Enrolled; sid in Enrolled is a

foreign key that references Students.
❖ What should be done if an Enrolled tuple with a non-

existent student id is inserted? (Reject it!)
❖ What should be done if a Students tuple is deleted?

– Also delete all Enrolled tuples that refer to it.
– Disallow deletion of a Students tuple that is referred to.
– Set sid in Enrolled tuples that refer to it to a default sid.
– (In SQL, also: Set sid in Enrolled tuples that refer to it to a

special value null, denoting `unknown’ or `inapplicable’.)
❖ Similar if primary key of Students tuple is updated.

Database Management Systems, R. Ramakrishnan and J. Gehrke 69

Referential Integrity in SQL/92

❖ SQL/92 supports all 4
options on deletes and
updates.
– Default is NO ACTION

(delete/update is rejected)
– CASCADE (also delete all

tuples that refer to
deleted tuple)

– SET NULL / SET DEFAULT
(sets foreign key value of
referencing tuple)

CREATE TABLE Enrolled
 (sid CHAR(20),
 cid CHAR(20),
 grade CHAR(2),
 PRIMARY KEY (sid,cid),
 FOREIGN KEY (sid)
 REFERENCES Students
 ON DELETE CASCADE
 ON UPDATE SET DEFAULT)

Relational Algebra

Database Management Systems, R. Ramakrishnan and J. Gehrke 71

Relational Query Languages

❖ Query languages: Allow manipulation and
retrieval of data from a database.

❖ Relational model supports simple, powerful QLs:
– Strong formal foundation based on logic.
– Allows for much optimization.

❖ Query Languages != programming languages!
– QLs not expected to be “Turing complete”.
– QLs not intended to be used for complex

calculations.
– QLs support easy, efficient access to large data

sets.

Database Management Systems, R. Ramakrishnan and J. Gehrke 72

☛ Understanding Algebra & Calculus is key to
☛ understanding SQL, query processing!

Formal Relational Query Languages

–Two mathematical Query Languages form the
basis for “real” languages (e.g. SQL), and for
implementation:

❶ Relational Algebra: More operational, very
useful for representing execution plans.

❷ Relational Calculus: Lets users describe
what they want, rather than how to compute
it. (Non-operational, declarative.)

Database Management Systems, R. Ramakrishnan and J. Gehrke 73

Preliminaries

❖ A query is applied to relation instances, and the
result of a query is also a relation instance.
– Schemas of input relations for a query are fixed

(but query will run regardless of instance!)
– The schema for the result of a given query is also

fixed! Determined by definition of query language
constructs.

❖ Positional vs. named-field notation:
– Positional notation easier for formal definitions,

named-field notation more readable.
– Both used in SQL

Database Management Systems, R. Ramakrishnan and J. Gehrke 74

sid sname rating age
22 dustin 7 45.0
31 lubber 8 55.5
58 rusty 10 35.0

sid sname rating age
28 yuppy 9 35.0
31 lubber 8 55.5
44 guppy 5 35.0
58 rusty 10 35.0

sid bid day
22 101 10/10/96
58 103 11/12/96

R1

S1

S2

Example Instances

❖ “Sailors” and “Reserves”
relations for our examples.

❖ We’ll use positional or named
field notation, assume that
names of fields in query results
are `inherited’ from names of
fields in query input relations.

Reserves

Sailors

Database Management Systems, R. Ramakrishnan and J. Gehrke

❖ Basic operations:
– Selection () Selects a subset of rows from relation.
– Projection () Deletes unwanted columns from

relation.
– Cross-product () Allows us to combine two relations.
– Set-difference () Tuples in reln. 1, but not in reln. 2.
– Union () Tuples in reln. 1 and in reln. 2.

❖ Additional operations:
– Intersection, join, division, renaming: Not essential, but

(very!) useful.
❖ Since each operation returns a relation, operations

can be composed ! (Algebra is “closed”.)

75

σ
π

−
×

∪

Relational Algebra

Database Management Systems, R. Ramakrishnan and J. Gehrke 76

sname rating
yuppy 9
lubber 8
guppy 5
rusty 10

π sname rating S, ()2

age
35.0
55.5

πage S()2

Projection

❖ Deletes attributes that are not
in projection list.

❖ Schema of result contains
exactly the fields in the
projection list, with the same
names that they had in the
(only) input relation.

❖ Projection operator has to
eliminate duplicates! (Why??)
– Note: real systems typically

don’t do duplicate elimination
unless the user explicitly
asks for it. (Why not?)

Database Management Systems, R. Ramakrishnan and J. Gehrke 77

σ rating S
>8 2()

sid sname rating age
28 yuppy 9 35.0
58 rusty 10 35.0

sname rating
yuppy 9
rusty 10

π σsname rating rating S, (())
>8 2

Selection

❖ Selects rows that satisfy
selection condition.

❖ No duplicates in result!
❖ Schema of result identical

to schema of (only) input
relation.

❖ Result relation can be the
input for another relational
algebra operation!
(Operator composition.)

Database Management Systems, R. Ramakrishnan and J. Gehrke 78

sid sname rating age
22 dustin 7 45.0
31 lubber 8 55.5
58 rusty 10 35.0
44 guppy 5 35.0
28 yuppy 9 35.0

sid sname rating age
31 lubber 8 55.5
58 rusty 10 35.0

S S1 2∪

S S1 2∩

sid sname rating age
22 dustin 7 45.0

S S1 2−

Union, Intersection, Set-Difference

❖ All of these operations take
two input relations, which
must be union-compatible:
– Same number of fields.
– `Corresponding’ fields

have the same type.
❖ What is the schema of

result?

Database Management Systems, R. Ramakrishnan and J. Gehrke 79

ρ ((,),)C sid sid S R1 1 5 2 1 1→ → ×

(sid) sname rating age (sid) bid day
22 dustin 7 45.0 22 101 10/10/96
22 dustin 7 45.0 58 103 11/12/96
31 lubber 8 55.5 22 101 10/10/96
31 lubber 8 55.5 58 103 11/12/96
58 rusty 10 35.0 22 101 10/10/96
58 rusty 10 35.0 58 103 11/12/96

☛ Renaming operator:

Cross-Product

❖ Each row of S1 is paired with each row of R1.
❖ Result schema has one field per field of S1 and R1, with field names

`inherited’ if possible.
– Conflict: Both S1 and R1 have a field called sid.

Database Management Systems, R. Ramakrishnan and J. Gehrke 80

R c S c R S▹◃ = ×σ ()

(sid) sname rating age (sid) bid day
22 dustin 7 45.0 58 103 11/12/96
31 lubber 8 55.5 58 103 11/12/96

S RS sid R sid1 11 1▹◃ . .<

Joins
❖ Condition Join:

❖ Result schema same as that of cross-product.
❖ Fewer tuples than cross-product, might be able to compute

more efficiently
❖ Sometimes called a theta-join.

Database Management Systems, R. Ramakrishnan and J. Gehrke 81

sid sname rating age bid day
22 dustin 7 45.0 101 10/10/96
58 rusty 10 35.0 103 11/12/96

S Rsid1 1▹◃

Joins

❖ Equi-Join: A special case of condition join where the
condition c contains only equalities.

❖ Result schema similar to cross-product, but only one
copy of fields for which equality is specified.

❖ Natural Join: Equijoin on all common fields.

Database Management Systems, R. Ramakrishnan and J. Gehrke

❖ Not supported as a primitive operator, but useful for
expressing queries like:

Find sailors who have reserved all boats.
❖ Let A have 2 fields, x and y; B have only field y:

– A/B =
– i.e., A/B contains all x tuples (sailors) such that for every

y tuple (boat) in B, there is an xy tuple in A.
– Or: If the set of y values (boats) associated with an x value

(sailor) in A contains all y values in B, the x value is in A/B.
❖ In general, x and y can be any lists of fields; y is the

list of fields in B, and x y is the list of fields of A.

82

{ }x x y A y B| ,∃ ∈ ∀ ∈

∪

Division

Database Management Systems, R. Ramakrishnan and J. Gehrke 83

sno pno
s1 p1
s1 p2
s1 p3
s1 p4
s2 p1
s2 p2
s3 p2
s4 p2
s4 p4

pno
p2

pno
p2
p4

pno
p1
p2
p4

sno
s1
s2
s3
s4

sno
s1
s4

sno
s1

A

B1
B2

B3

A/B1 A/B2 A/B3

Examples of Division A/B

Database Management Systems, R. Ramakrishnan and J. Gehrke 84

Disqualified x values:

 A/B:

π πx x A B A((()))× −

π x A() − all disqualified tuples

Expressing A/B Using Basic
Operators

❖ Division is not essential op; just a useful
shorthand.
– (Also true of joins, but joins are so common that

systems implement joins specially.)
❖ Idea: For A/B, compute all x values that are not

`disqualified’ by some y value in B.
– x value is disqualified if by attaching y value from B,

we obtain an xy tuple that is not in A.

Exercises

• Tables:

• Sailors: sid, sname, rating, age

• Reserves: sid, bid, day

• Boats: bid, color

• Find names of sailors who’ve reserved boat #103

• Find names of sailors who’ve reserved a red boat

• Find sailors who’ve reserved a red or a green boat

• Find the names of sailors who’ve reserved all boats

Database Management Systems, R. Ramakrishnan and J. Gehrke

❖ Solution 1:

86

π σsname bid serves Sailors((Re))
=103 ▹◃

❖ Solution 2: ρ σ(, Re)Temp servesbid1 103=

ρ (,)Temp Temp Sailors2 1▹◃

π sname Temp()2

❖ Solution 3: π σsname bid
serves Sailors((Re))

=103 ▹◃

Find names of sailors who’ve reserved
boat #103

Database Management Systems, R. Ramakrishnan and J. Gehrke

❖ Information about boat color only available in
Boats; so need an extra join:

87

π σsname color red
Boats serves Sailors((' ') Re)

=
▹◃ ▹◃

❖ A more efficient solution:

π π π σsname sid bid color red
Boats s Sailors(((' ') Re))

=
▹◃ ▹◃

☛ A query optimizer can find this given the first solution!

Find names of sailors who’ve reserved a
red boat

Database Management Systems, R. Ramakrishnan and J. Gehrke 88

ρ σ(, (' ' ' '))Tempboats
color red color green

Boats
= ∨ =

π sname Tempboats serves Sailors(Re)▹◃ ▹◃

❖ Can also define Tempboats using union! (How?)
❖ What happens if is replaced by in this query?∨ ∧

Find sailors who’ve reserved a red or a
green boat

❖ Can identify all red or green boats, then find
sailors who’ve reserved one of these boats:

Database Management Systems, R. Ramakrishnan and J. Gehrke 89

ρ π σ(, ((' ') Re))Tempred
sid color red

Boats serves
=

▹◃

π sname Tempred Tempgreen Sailors(())∩ ▹◃

ρ π σ(, ((' ') Re))Tempgreen
sid color green

Boats serves
=

▹◃

Find sailors who’ve reserved a red and a
green boat

❖ Previous approach won’t work! Must identify
sailors who’ve reserved red boats, sailors
who’ve reserved green boats, then find the
intersection (note that sid is a key for Sailors):

Database Management Systems, R. Ramakrishnan and J. Gehrke 90

ρ π π(, (, Re) / ())Tempsids
sid bid

serves
bid
Boats

π sname Tempsids Sailors()▹◃

❖ To find sailors who’ve reserved all ‘Interlake’ boats:

/ (' ')π σ
bid bname Interlake

Boats
=

.....

Find the names of sailors who’ve
reserved all boats

❖ Uses division; schemas of the input relations to /
must be carefully chosen:

Database Management Systems, R. Ramakrishnan and J. Gehrke 91

Summary

❖ The relational model has rigorously defined
query languages that are simple and
powerful.

❖ Relational algebra is more operational;
useful as internal representation for query
evaluation plans.

❖ Several ways of expressing a given query;
a query optimizer should choose the most
efficient version.

