## Functional Dependencies and Normalization

DataBases



### Slides from CS145 Stanford (2016), Christopher Ré

#### Motivation

### **Design Theory**

- Design theory is about how to represent your data to avoid anomalies
- Simple algorithms for "best practices"

#### Designing the Schema of a Database

| Student | Course | Room |
|---------|--------|------|
| Mary    | CS145  | B01  |
| Joe     | CS145  | B01  |
| Sam     | CS145  | B01  |
| ••      | ••     | ••   |

#### 1. Data Anomalies and Constraints

A poorly designed database causes anomalies:

| Student | Course | Room |
|---------|--------|------|
| Mary    | CS145  | B01  |
| Joe     | CS145  | B01  |
| Sam     | CS145  | B01  |
| ••      | ••     | ••   |

If every course is in only one room, contains <u>redundant</u> information!

A poorly designed database causes anomalies:

| Student | Course | Room |
|---------|--------|------|
| Mary    | CS145  | B01  |
| Joe     | CS145  | C12  |
| Sam     | CS145  | B01  |
| ••      | ••     | ••   |

If we update the room number for one tuple, we get inconsistent data = an <u>update</u> <u>anomaly</u>

A poorly designed database causes anomalies:

| Student | Course | Roo | m |
|---------|--------|-----|---|
| ••      | ••     | • • |   |

If everyone drops the class, we lose what room the class is in! = a delete anomaly

A poorly designed database causes anomalies:

|       |       |     |   | Student | Course | Room |
|-------|-------|-----|---|---------|--------|------|
|       |       |     |   | Mary    | CS145  | B01  |
|       |       |     |   | Joe     | CS145  | B01  |
|       |       |     | _ | Sam     | CS145  | B01  |
| • • • | CS229 | C12 |   | ••      | ••     | ••   |

Similarly, we can't reserve a room without students = an <u>insert anomaly</u>

| Student | Course |
|---------|--------|
| Mary    | CS145  |
| Joe     | CS145  |
| Sam     | CS145  |
| ••      |        |

| Course | Room |
|--------|------|
| CS145  | B01  |
| CS229  | C12  |

Is this form better?

- Redundancy?
- Update anomaly?
- Delete anomaly?
- Insert anomaly?

Today: develop theory to understand why this design may be better and how to find this decomposition...

#### 2. Functional Dependencies

#### **Functional Dependency**

Def: Let A,B be sets of attributes We write A  $\rightarrow$  B or say A functionally determines B if, for any tuples t<sub>1</sub> and t<sub>2</sub>:

 $t_1[A] = t_2[A]$  implies  $t_1[B] = t_2[B]$ 

and we call  $A \rightarrow B$  a <u>functional dependency</u>

A->B means that "whenever two tuples agree on A then they agree on B."

| <b>A</b> <sub>1</sub> | <br>A <sub>m</sub> | B <sub>1</sub> | <br>B <sub>n</sub> |  |
|-----------------------|--------------------|----------------|--------------------|--|
|                       |                    |                |                    |  |
|                       |                    |                |                    |  |
|                       |                    |                |                    |  |
|                       |                    |                |                    |  |
|                       |                    |                |                    |  |

 $\label{eq:addition} \begin{array}{l} \underline{\text{Defn (again):}}\\ \text{Given attribute sets A=} \{A_1, \dots, A_m\}\\ \text{and B} = \{B_1, \dots, B_n\} \text{ in R,} \end{array}$ 



 $\label{eq:additional} \begin{array}{l} \underline{\text{Defn (again):}}\\ \text{Given attribute sets A=} \{A_1, \dots, A_m\}\\ \text{and B} = \{B_1, \dots, B_n\} \text{ in R}, \end{array}$ 

The functional dependency  $A \rightarrow$ B on R holds if for any  $t_i, t_i$  in R:



If t1,t2 agree here..

<u>Defn (again):</u> Given attribute sets  $A = \{A_1, ..., A_m\}$ and  $B = \{B_1, ..., B_n\}$  in R,

The functional dependency  $A \rightarrow$ B on R holds if for any  $t_i, t_i$  in R:

 $t_i[A_1] = t_j[A_1] \text{ AND } t_i[A_2] = t_j[A_2] \text{ AND } \dots$ AND  $t_i[A_m] = t_j[A_m]$ 



 $\label{eq:additional} \begin{array}{l} \underline{\text{Defn (again):}}\\ \text{Given attribute sets A=} \{A_1, \dots, A_m\}\\ \text{and B} = \{B_1, \dots, B_n\} \text{ in } R, \end{array}$ 

The functional dependency  $A \rightarrow$ B on R holds if for any  $t_i, t_i$  in R:

 $\underline{if} t_i[A_1] = t_j[A_1] \text{ AND } t_i[A_2] = t_j[A_2]$ AND ... AND  $t_i[A_m] = t_j[A_m]$ 

 $\frac{\text{then}}{\text{AND}} t_i[B_1] = t_j[B_1] \text{ AND } t_i[B_2] = t_j[B_2]$   $\text{AND } \dots \text{ AND } t_i[B_n] = t_j[B_n]$ 

#### FDs for Relational Schema Design

- High-level idea: why do we care about FDs?
  - 1. Start with some relational *schema*
  - 2. Model its *functional dependencies (FDs)*
  - 3. Use these to *design a better schema* 
    - 1. One which minimizes the possibility of anomalies

#### **Functional Dependencies as Constraints**

### A functional dependency is a form of constraint

- Holds on some instances not others.
- Part of the schema, helps define a valid *instance*.

Recall: an <u>instance</u> of a schema is a multiset of tuples conforming to that schema, i.e. a table

| Student | Course | Room |
|---------|--------|------|
| Mary    | CS145  | B01  |
| Joe     | CS145  | B01  |
| Sam     | CS145  | B01  |
| ••      | ••     | ••   |

Note: The FD {Course} -> {Room} holds on this instance

#### Functional Dependencies as Constraints

Note that:

- You can check if an FD is **violated** by examining a single instance;
- However, you **cannot prove** that an FD is part of the schema by examining a single instance.
  - This would require checking every valid instance

| Student | Course | Room |
|---------|--------|------|
| Mary    | CS145  | B01  |
| Joe     | CS145  | B01  |
| Sam     | CS145  | B01  |
|         | ••     | ••   |

However, cannot prove that the FD {Course} -> {Room} is part of the schema

#### More Examples

An FD is a constraint which <u>holds</u>, or <u>does not</u> <u>hold</u> on an instance:

| EmpID | Name  | Phone | Position |
|-------|-------|-------|----------|
| E0045 | Smith | 1234  | Clerk    |
| E3542 | Mike  | 9876  | Salesrep |
| E1111 | Smith | 9876  | Salesrep |
| E9999 | Mary  | 1234  | Lawyer   |

#### More Examples

| EmpID | Name  | Phone  | Position |
|-------|-------|--------|----------|
| E0045 | Smith | 1234   | Clerk    |
| E3542 | Mike  | 9876 ← | Salesrep |
| E1111 | Smith | 9876 ← | Salesrep |
| E9999 | Mary  | 1234   | Lawyer   |

 $\{Position\} \rightarrow \{Phone\}$ 

#### More Examples

| EmpID | Name  | Phone  | Position |
|-------|-------|--------|----------|
| E0045 | Smith | 1234 → | Clerk    |
| E3542 | Mike  | 9876   | Salesrep |
| E1111 | Smith | 9876   | Salesrep |
| E9999 | Mary  | 1234 → | Lawyer   |

#### but *not* {Phone} $\rightarrow$ {Position}

### Activity

| А | В | С | D | E |
|---|---|---|---|---|
| 1 | 2 | 4 | 3 | 6 |
| 3 | 2 | 5 | 1 | 8 |
| 1 | 4 | 4 | 5 | 7 |
| 1 | 2 | 4 | 3 | 6 |
| 3 | 2 | 5 | 1 | 8 |

Find at least three FDs which are violated on this instance:



#### "Good" vs. "Bad" FDs

We can start to develop a notion of **good** vs. **bad** FDs:

| EmpID | Name  | Phone | Position |
|-------|-------|-------|----------|
| E0045 | Smith | 1234  | Clerk    |
| E3542 | Mike  | 9876  | Salesrep |
| E1111 | Smith | 9876  | Salesrep |
| E9999 | Mary  | 1234  | Lawyer   |

Intuitively:

EmpID -> Name, Phone, Position is "good FD"

 Minimal redundancy, less possibility of anomalies

#### "Good" vs. "Bad" FDs

We can start to develop a notion of **good** vs. **bad** FDs:

| EmpID | Name  | Phone | Position |
|-------|-------|-------|----------|
| E0045 | Smith | 1234  | Clerk    |
| E3542 | Mike  | 9876  | Salesrep |
| E1111 | Smith | 9876  | Salesrep |
| E9999 | Mary  | 1234  | Lawyer   |

Intuitively:

EmpID -> Name, Phone, Position is "good FD"

But Position -> Phone is a "bad FD"

 Redundancy! Possibility of data anomalies

### "Good" vs. "Bad" FDs

| Student | Course | Room |
|---------|--------|------|
| Mary    | CS145  | B01  |
| Joe     | CS145  | B01  |
| Sam     | CS145  | B01  |
| ••      | ••     | ••   |

Returning to our original example... can you see how the "bad FD" {Course} -> {Room} could lead to an:

- Update Anomaly
- Insert Anomaly
- Delete Anomaly

• ...

Given a set of FDs (from user) our goal is to:

- 1. Find all FDs, and
- 2. Eliminate the "Bad Ones".

#### FDs for Relational Schema Design

- High-level idea: why do we care about FDs?
  - 1. Start with some relational *schema*
  - 2. Find out its *functional dependencies (FDs)*

This part can be tricky!

- 3. Use these to *design a better schema* 
  - 1. One which minimizes possibility of anomalies

- There can be a very **large number** of FDs...
  - How to find them all efficiently?
- We can't necessarily show that any FD will hold **on all instances...** 
  - How to do this?

We will start with this problem: Given a set of FDs, F, what other FDs must hold?

Equivalent to asking:

Given a set of FDs,  $F = \{f_1, \dots, f_n\}$ , does an FD g hold?

**Inference problem**: How do we decide?

#### Example:

#### Products

| Name   | Color | Category | Dep    | Price |
|--------|-------|----------|--------|-------|
| Gizmo  | Green | Gadget   | Toys   | 49    |
| Widget | Black | Gadget   | Toys   | 59    |
| Gizmo  | Green | Whatsit  | Garden | 99    |

Provided FDs:

- 1. {Name}  $\rightarrow$  {Color}
- 2. {Category} →
  {Department}
  3. {Color, Category} →
  {Price}

Given the provided FDs, we can see that {Name, Category}  $\rightarrow$  {Price} must also hold on **any instance**...

Which / how many other FDs do?!?

Equivalent to asking:

Given a set of FDs,  $F = \{f_1, \dots, f_n\}$ , does an FD g hold?

Inference problem: How do we decide?

- Trivial FD
- Non-trivial FD
- Completely non-trivial FD

Equivalent to asking:

Given a set of FDs,  $F = \{f_1, \dots, f_n\}$ , does an FD g hold?

**Inference problem**: How do we decide?

Answer: Three simple rules called Armstrong's Rules.

- 1. Reflexivity: Y is included in X => X -> Y
- 2. Augmentation:  $X \rightarrow Y \Rightarrow XZ \rightarrow YZ$
- 3. Transitivity:  $X \rightarrow Y$  and  $Y \rightarrow Z \Rightarrow X \rightarrow Z$

Equivalent to asking:

Given a set of FDs,  $F = \{f_1, \dots, f_n\}$ , does an FD g hold?

**Inference problem**: How do we decide?

- 1. Split/Combine
- 2. Reduction
- 3. Transitivity

#### 1. Split/Combine



 $A_1, \ldots, A_m \rightarrow B_1, \ldots, B_n$ 

### 1. Split/Combine



$$A_1, ..., A_m \rightarrow B_1, ..., B_n$$

... is equivalent to the following *n* FDs...

$$A_1, \dots, A_m \rightarrow B_i$$
 for i=1,...,n

### 1. Split/Combine



And vice-versa,  $A_1, \dots, A_m \rightarrow B_i$  for i=1,...,n

... is equivalent to ...

$$A_1, \dots, A_m \rightarrow B_1, \dots, B_n$$

### 2. Reduction/Trivial



$$A_1, \dots, A_m \rightarrow A_j$$
 for any j=1,...,m

# 3. Transitivity



$$A_1, \dots, A_m \rightarrow B_1, \dots, B_n$$
 and  
 $B_1, \dots, B_n \rightarrow C_1, \dots, C_k$ 

# 3. Transitivity



 $A_{1},...,A_{m} \rightarrow B_{1},...,B_{n} \text{ and}$  $B_{1},...,B_{n} \rightarrow C_{1},...,C_{k}$ implies $A_{1},...,A_{m} \rightarrow C_{1},...,C_{k}$ 

# Finding Functional Dependencies

### Example:

### Products

| Name   | Color | Category | Dep    | Price |
|--------|-------|----------|--------|-------|
| Gizmo  | Green | Gadget   | Toys   | 49    |
| Widget | Black | Gadget   | Toys   | 59    |
| Gizmo  | Green | Whatsit  | Garden | 99    |

Provided FDs:

1. {Name}  $\rightarrow$  {Color} 2. {Category}  $\rightarrow$ {Department} 3. {Color, Category}  $\rightarrow$ {Price}

Which / how many other FDs hold?

# **Finding Functional Dependencies**

#### Example:

### **Inferred FDs:**

| Inferred FD                             | Rule used |
|-----------------------------------------|-----------|
| 4. {Name, Category} -> {Name}           | ?         |
| 5. {Name, Category} -> {Color}          | ?         |
| 6. {Name, Category} -> {Category}       | ?         |
| 7. {Name, Category -> {Color, Category} | ?         |
| 8. {Name, Category} -> {Price}          | ?         |

Provided FDs:

{Name} → {Color}
 {Category} →
 {Dept.}
 {Color, Category} →
 {Price}

Which / how many other FDs hold?

# **Finding Functional Dependencies**

#### Example:

### **Inferred FDs:**

| Inferred FD                             | Rule used           |
|-----------------------------------------|---------------------|
| 4. {Name, Category} -> {Name}           | Trivial             |
| 5. {Name, Category} -> {Color}          | Transitive (4,1)    |
| 6. {Name, Category} -> {Category}       | Trivial             |
| 7. {Name, Category -> {Color, Category} | Split/combine (5,6) |
| 8. {Name, Category} -> {Price}          | Transitive (7,3)    |

Can we find an algorithmic way to do this?

Provided FDs: 1. {Name}  $\rightarrow$  {Color} 2. {Category}  $\rightarrow$ {Dept.} 3. {Color, Category}  $\rightarrow$ {Price}

### 2.2. Closures

### Closure of a set of Attributes

Given a set of attributes  $A_1, ..., A_n$  and a set of FDs F: Then the <u>closure</u>,  $\{A_1, ..., A_n\}^+$  is the set of attributes B s.t.  $\{A_1, ..., A_n\} \rightarrow B$ 

Example Closures: {name}+ = {name, color}
{name, category}+ =
{name, category, color, dept, price}
{color}+ = {color}

Start with  $X = \{A_1, ..., A_n\}$  and set of FDs F.

```
Repeat until X doesn't change; do:
```

if 
$$\{B_1, ..., B_n\} \rightarrow C$$
 is entailed by F

and 
$$\{B_1, ..., B_n\} \subseteq X$$

then add C to X.

Return X as X<sup>+</sup>

Start with X = {A<sub>1</sub>, ..., A<sub>n</sub>}, FDs F. Repeat until X doesn't change; do: if {B<sub>1</sub>, ..., B<sub>n</sub>}  $\rightarrow$  C is in F and {B<sub>1</sub>, ..., B<sub>n</sub>}  $\subseteq$  X: then add C to X. Return X as X<sup>+</sup> {name, category}\* =
{name, category}

{name} → {color}
{category} → {dept}
{color, category} →
{price}

Start with X = {A<sub>1</sub>, ..., A<sub>n</sub>}, FDs F. Repeat until X doesn't change; do: if {B<sub>1</sub>, ..., B<sub>n</sub>}  $\rightarrow$  C is in F and {B<sub>1</sub>, ..., B<sub>n</sub>}  $\subseteq$  X: then add C to X. Return X as X<sup>+</sup> {name, category}\* =
{name, category}

{name, category}\* =
{name, category, color}

= {name} → {color}
{category} → {dept}
{color, category} →
{price}

Start with X = {A<sub>1</sub>, ..., A<sub>n</sub>}, FDs F. Repeat until X doesn't change; do: if {B<sub>1</sub>, ..., B<sub>n</sub>}  $\rightarrow$  C is in F and {B<sub>1</sub>, ..., B<sub>n</sub>}  $\subseteq$  X: then add C to X. Return X as X<sup>+</sup> {name, category}\* =
{name, category}

{name, category}\* =
{name, category, color}

 $\{name\} \rightarrow \{color\}$ 

{category}  $\rightarrow$  {dept}

```
{color, category} →
{price}
```

{name, category}\* =
{name, category, color, dept}

Start with X = {A<sub>1</sub>, ..., A<sub>n</sub>}, FDs F. Repeat until X doesn't change; do: if {B<sub>1</sub>, ..., B<sub>n</sub>}  $\rightarrow$  C is in F and {B<sub>1</sub>, ..., B<sub>n</sub>}  $\subseteq$  X: then add C to X. Return X as X<sup>+</sup> {name, category}+ =
{name, category}

{name, category}\* =
{name, category, color}

{name}  $\rightarrow$  {color}

{category}  $\rightarrow$  {dept}

{name, category}\* =
{name, category, color, dept}

{name, category}+ =
{name, category, color, dept,
price}

# Example

$$\{A,B\} \rightarrow \{C\} \\ \{A,D\} \rightarrow \{E\} \\ \{B\} \rightarrow \{D\} \\ \{A,F\} \rightarrow \{B\}$$

Compute 
$$\{A,B\}^{+} = \{A, B, B, B\}^{+}$$

Compute 
$$\{A, F\}^+ = \{A, F, F\}^+$$

**}** 

# Example

$$\{A,B\} \rightarrow \{C\} \\ \{A,D\} \rightarrow \{E\} \\ \{B\} \rightarrow \{D\} \\ \{A,F\} \rightarrow \{B\}$$

Compute 
$$\{A,B\}^{+} = \{A, B, C, D\}^{+}$$

Compute 
$$\{A, F\}^{+} = \{A, F, B\}^{+}$$

}

### Example

$$\{A,B\} \rightarrow \{C\} \\ \{A,D\} \rightarrow \{E\} \\ \{B\} \rightarrow \{D\} \\ \{A,F\} \rightarrow \{B\}$$

Compute  $\{A,B\}^+ = \{A, B, C, D, E\}$ 

Compute  $\{A, F\}^+ = \{A, B, C, D, E, F\}$ 

### 3. Closures, Superkeys and Keys

### Why Do We Need the Closure?

- With closure we can find all FD's easily
- To check if  $X \rightarrow A$ 
  - 1. Compute X<sup>+</sup>
  - 2. Check if A X+

Note here that X is a set of attributes, but A is a single attribute. Why does considering FDs of this form suffice?

Recall the <u>Split/combine</u> rule:  $X \rightarrow A_1, ..., X \rightarrow A_n$ implies  $X \rightarrow \{A_1, ..., A_n\}$ 

Step 1: Compute X<sup>+</sup>, for every set of attributes X:

```
{A}^{+} = {A}
\{B\}^+ = \{B,D\}
\{C\}^+ = \{C\}
\{D\}^+ = \{D\}
{A,B}^+ = {A,B,C,D}
\{A,C\}^+ = \{A,C\}
{A,D}^+ = {A,B,C,D}
{A,B,C}^+ = {A,B,D}^+ = {A,C,D}^+ = {A,B,C,D}
\{B,C,D\}^+ = \{B,C,D\}
{A,B,C,D}^+ = {A,B,C,D}
```

```
<u>Example:</u>
Given F =
```



No need to compute these- why?

Step 1: Compute X<sup>+</sup>, for every set of attributes X:

{A}+ = {A}, {B}+ = {B,D}, {C}+ = {C}, {D}+ =
{D}, {A,B}+ = {A,B,C,D}, {A,C}+ = {A,C}, {A,D}
+ = {A,B,C,D}, {A,B,C}+ = {A,B,D}+ = {A,C,D}+ =
{A,B,C,D}, {B,C,D}+ = {B,C,D}, {A,B,C,D}+
= {A,B,C,D}

Example: Given F =

 $\begin{array}{c} \{A,B\} \rightarrow C \\ \{A,D\} \rightarrow B \\ \{B\} \rightarrow D \end{array} \end{array}$ 

Step 2: Enumerate all FDs X  $\rightarrow$  Y, s.t. Y  $\subseteq$  X<sup>+</sup> and X  $\cap$  Y =  $\emptyset$ :

$$\{A,B\} \rightarrow \{C,D\}, \{A,D\} \rightarrow \{B,C\}, \\ \{A,B,C\} \rightarrow \{D\}, \{A,B,D\} \rightarrow \{C\}, \\ \{A,C,D\} \rightarrow \{B\}$$

Step 1: Compute X<sup>+</sup>, for every set of attributes X:

{A}+ = {A}, {B}+ = {B,D}, {C}+ = {C}, {D}+ =
{D}, {A,B}+ = {A,B,C,D}, {A,C}+ = {A,C}, {A,D}
+ = {A,B,C,D}, {A,B,C}+ = {A,B,D}+ = {A,C,D}+ =
{A,B,C,D}, {B,C,D}+ = {B,C,D}, {A,B,C,D}+
= {A,B,C,D}

Example: Given F =

 $\begin{array}{c} \{A,B\} \rightarrow C \\ \{A,D\} \rightarrow B \\ \{B\} \rightarrow D \end{array} \end{array}$ 

Step 2: Enumerate all FDs X  $\rightarrow$  Y, s.t.  $Y \subseteq X^+$  and X  $\cap$  Y =  $\emptyset$ :

$$\{A,B\} \rightarrow \{C,D\}, \{A,D\} \rightarrow \{B,C\}, \\ \{A,B,C\} \rightarrow \{D\}, \{A,B,D\} \rightarrow \{C\}, \\ \{A,C,D\} \rightarrow \{B\}$$

"Y is in the closure of X"

Step 1: Compute X<sup>+</sup>, for every set of attributes X:

{A}+ = {A}, {B}+ = {B,D}, {C}+ = {C}, {D}+ =
{D}, {A,B}+ = {A,B,C,D}, {A,C}+ = {A,C}, {A,D}
+ = {A,B,C,D}, {A,B,C}+ = {A,B,D}+ = {A,C,D}+ =
{A,B,C,D}, {B,C,D}+ = {B,C,D}, {A,B,C,D}+
= {A,B,C,D}

Example: Given F =

 $\begin{array}{l} \{A,B\} \rightarrow C \\ \{A,D\} \rightarrow B \\ \{B\} \rightarrow D \end{array}$ 

Step 2: Enumerate all FDs X  $\rightarrow$  Y, s.t. Y  $\subseteq$  X<sup>+</sup> and X  $\cap$  Y =  $\emptyset$ 

$$\{A,B\} \rightarrow \{C,D\}, \{A,D\} \rightarrow \{B,C\}, \\ \{A,B,C\} \rightarrow \{D\}, \{A,B,D\} \rightarrow \{C\}, \\ \{A,C,D\} \rightarrow \{B\}$$

The FD X  $\rightarrow$  Y is non-trivial

# Minimal Cover of a set F of FD

Minimal subset of elementary FD allowing to generate all the others.

- Theorem:
  - Any set of FD has a minimal cover, that in general is not unique.
- Formally, F is a Minimal Cover iif:
  - All f in F is "elementary".
  - There is no f in F such that F {f} is "equivalent" to F.

## Minimal Cover of a set F of FD

- X -> A is an **elementary** FD if:
  - A is an attribute, X is a set of attributes, A is not included in X
  - it does not exist X' included in X such that X '-> A in F+

### • Equivalence

• Two sets of FD are equivalent if they have the same transitive closure.

### 3.1. Superkeys and Keys

## Keys and Superkeys

A <u>superkey</u> is a set of attributes  $A_1, ..., A_n$ s.t. for any other attribute B in R, we have  $\{A_1, ..., A_n\} \rightarrow B$ 

I.e. all attributes are functionally determined by a superkey

A key is a minimal superkey

Meaning that no subset of a key is also a superkey

# Finding Keys and Superkeys

- For each set of attributes X
  - 1. Compute X<sup>+</sup>
  - 2. If X<sup>+</sup> = set of all attributes then X is a **superkey**
  - 3. If X is minimal, then it is a **key**

Do we need to check all sets of attributes? Which sets?

## Example of Finding Keys

Product(name, price, category, color)

{name, category} → price
{category} → color

What is a key?

### Example of Keys

Product(name, price, category, color)

{name, category}<sup>+</sup> = {name, price, category, color}

- = the set of all attributes
- $\Rightarrow$  this is a **superkey**
- $\Rightarrow$  this is a **key**, since neither **name** nor **category** alone is a superkey

### 4. Normalization

### **Normal Forms**

- <u>1<sup>st</sup> Normal Form (1NF)</u> = All tables are flat
- <u>2<sup>nd</sup> Normal Form</u>
- Boyce-Codd Normal Form (BCNF)
- 3rd Normal Form (3NF)

DB designs based on *functional dependencies*, intended to prevent data **anomalies** 

## 1<sup>st</sup> Normal Form (1NF)

| Student | Courses       |
|---------|---------------|
| Mary    | {CS145,CS229} |
| Joe     | {CS145,CS106} |
| •••     | • • •         |

| Student | Courses |
|---------|---------|
| Mary    | CS145   |
| Mary    | CS229   |
| Joe     | CS145   |
| Joe     | CS106   |

Violates 1NF. In 1<sup>st</sup> NF

1NF Constraint: Types must be atomic!

# 2<sup>nd</sup> Normal Form (2NF)

### Definition

a relationship is in second normal form iff:

➣ it is the first form

> any non-key attribute is not dependent on a key part



Such a relationship should be broken into R1 (K1, K2, X) and R2 (K2, Y)

## Example 2NF

- Example 1:
  - Supplier (name, address, product, price)
  - The key is (name, product)
  - But name -> address : not second form
- Example 2:
  - R (wine, type, customer, discount)
  - The key is (wine, customer)
  - But wine -> type: not second form

# 3<sup>rd</sup> Normal Form (3NF)

- Definition
  - a relationship is in third normal form if for all nontrivial FD in F (X->A)
     X is a super key or A is a prime attribute (is part of a key).
    - > 3NF  $\rightarrow$  2NF
    - > Prohibits FD between non-key attributes (not part of a key)
    - > formally:
      - $> X \rightarrow A$  is a nontrivial FD in F and
        - > X contains an R key, or
        - > A is part of a key of R.
- Diagram



Such a relationship should be broken into

R1 (<u>K</u>X, Y) and R 2 (X, Z)

## Example 3NF

- Example
  - Car (NVH, brand, type, power, color)
  - NVH is key
  - type -> brand
  - type -> Power
  - Not in 3rd form!

#### **Decomposition Example**

- Car (NVH, brand, type, power, color) vehicle (NVH, type, color) Model (type, brand, power)
- Reduction (wine, type, customer, discount)
   Discount (type, customer, discount)
   Type (wine, type)
   Order(wine, customer)

WINE

TYPE

DISCOUNT

CUSTOMER

#### **Even Fewer Redundancies: BCNF**

Definition

a relationship is in BCNF (Boyce-Codd Normal Form) iff all nontrivial FD in F (X->A) X is a super key Simpler than 3NF, a little stronger (BCNF -> 3NF)



R1 (<u>K2 Y</u>, X) and R2 (<u>Y</u>, K1)

#### 4.1. Boyce-Codd Normal Form

## Back to Conceptual Design

Now that we know how to find FDs, it's a straight-forward process:

- 1. Search for "bad" FDs
- 2. If there are any, then *keep decomposing the table into subtables* until no more bad FDs
- 3. When done, the database schema is *normalized*

Recall: there are several normal forms...

## Boyce-Codd Normal Form (BCNF)

- Main idea is that we define "good" and "bad" FDs as follows:
  - $X \rightarrow A$  is a "good FD" if X is a (super)key
    - In other words, if A is the set of all attributes
  - $X \rightarrow A$  is a *"bad FD"* otherwise
- We will try to eliminate the "bad" FDs!

## Boyce-Codd Normal Form (BCNF)

- Why does this definition of "good" and "bad" FDs make sense?
- If X is not a (super)key, it functionally determines some of the attributes
  - Recall: this means there is <u>redundancy</u>
  - And redundancy like this can lead to data anomalies!

| EmpID | Name  | Phone | Position |
|-------|-------|-------|----------|
| E0045 | Smith | 1234  | Clerk    |
| E3542 | Mike  | 9876  | Salesrep |
| E1111 | Smith | 9876  | Salesrep |
| E9999 | Mary  | 1234  | Lawyer   |

## **Boyce-Codd Normal Form**

BCNF is a simple condition for removing anomalies from relations:

A relation R is in BCNF if: if  $\{A_1, ..., A_n\} \rightarrow B$  is a non-trivial FD in R then  $\{A_1, ..., A_n\}$  is a superkey for R

*Equivalently*:  $\forall$  sets of attributes X, either (X<sup>+</sup> = X) or (X<sup>+</sup> = all attributes)

In other words: there are no "bad" FDs

| Name | SSN         | PhoneNumber  | City      |
|------|-------------|--------------|-----------|
| Fred | 123-45-6789 | 206-555-1234 | Seattle   |
| Fred | 123-45-6789 | 206-555-6543 | Seattle   |
| Joe  | 987-65-4321 | 908-555-2121 | Westfield |
| Joe  | 987-65-4321 | 908-555-1234 | Westfield |

 $\{SSN\} \rightarrow \{Name, City\}$ 

This FD is bad because it is <u>not</u> a superkey



What is the key? {SSN, PhoneNumber}

| Name | <u>SSN</u>  | City    |
|------|-------------|---------|
| Fred | 123-45-6789 | Seattle |
| Joe  | 987-65-4321 | Madison |

| <u>SSN</u>  | PhoneNumber  |
|-------------|--------------|
| 123-45-6789 | 206-555-1234 |
| 123-45-6789 | 206-555-6543 |
| 987-65-4321 | 908-555-2121 |
| 987-65-4321 | 908-555-1234 |

{SSN} → {Name,City}

This FD is now good because it is the key

Let's check anomalies:

- Redundancy ?
- Update ?
- Delete ?

```
BCNFDecomp(R):
```

BCNFDecomp(R): Find a set of attributes X s.t.:  $X^+ \neq X$  and  $X^+ \neq$  [all attributes] Find a set of attributes X which has non-trivial "bad" FDs, i.e. is not a superkey, using closures

```
BCNFDecomp(R):
Find a set of attributes X s.t.: X^+ \neq X and X^+ \neq [all attributes]
```

```
if (not found) then Return R
```

If no "bad" FDs found, in BCNF!

```
BCNFDecomp(R):
Find a set of attributes X s.t.: X^+ \neq X and
X^+ \neq [all attributes]
```

if (not found) then Return R

 $\underline{let} Y = X^+ - X, \ Z = (X^+)^C$ 

Let Y be the attributes that X functionally determines (+ that are not in X)

And let Z be the other attributes that it doesn't

```
BCNFDecomp(R):
Find a set of attributes X s.t.: X^+ \neq X and
X^+ \neq [all attributes]
```

if (not found) then Return R

<u>let</u>  $Y = X^+ - X$ ,  $Z = (X^+)^{C}$ decompose R into  $R_1(X \cup Y)$  and  $R_2(X \cup Z)$  Split into one relation (table) with X plus the attributes that X determines (Y)...



```
BCNFDecomp(R):
Find a set of attributes X s.t.: X^+ \neq X and
X^+ \neq [all attributes]
```

if (not found) then Return R

<u>let</u>  $Y = X^+ - X$ ,  $Z = (X^+)^C$ decompose R into  $R_1(X \cup Y)$  and  $R_2(X \cup Z)$  And one relation with X plus the attributes it does not determine (Z)



```
BCNFDecomp(R):
  Find a set of attributes X s.t.: X^+ \neq X and
X^+ \neq [all attributes]
 if (not found) then Return R
  <u>let</u> Y = X^+ - X, Z = (X^+)^C
  decompose R into R_1(X \cup Y) and R_2(X \cup Z)
 Return BCNFDecomp(R_1),
BCNFDecomp(R_2)
```

Proceed recursively until no more "bad" FDs!



```
BCNFDecomp(R):
Find a set of attributes X s.t.: X^+ \neq X and X^+ \neq [all attributes]
```

if (not found) then Return R

<u>let</u>  $Y = X^+ - X$ ,  $Z = (X^+)^C$ decompose R into  $R_1(X \cup Y)$  and  $R_2(X \cup Z)$ 

Return BCNFDecomp( $R_1$ ), BCNFDecomp( $R_2$ )

R(A,B,C,D,E)

```
\begin{array}{l} \{A\} \rightarrow \{B,C\} \\ \{C\} \rightarrow \{D\} \end{array}
```



#### 4.2. Decompositions

# Recap: Decompose to remove redundancies

- 1. We saw that **redundancies** in the data ("bad FDs") can lead to data anomalies
- 2. We developed mechanisms to **detect and remove** redundancies by decomposing tables into BCNF
  - 1. BCNF decomposition is *standard practice-* very powerful & widely used!
- 3. However, sometimes decompositions can lead to **more subtle unwanted effects...**

When does this happen?

#### **Decompositions in General**



 $R_1$  = the projection of R on  $A_1$ , ...,  $A_n$ ,  $B_1$ , ...,  $B_m$  $R_2$  = the projection of R on  $A_1$ , ...,  $A_n$ ,  $C_1$ , ...,  $C_p$ 

# Theory of Decomposition

| Name     | Price | Category |
|----------|-------|----------|
| Gizmo    | 19.99 | Gadget   |
| OneClick | 24.99 | Camera   |
| Gizmo    | 19.99 | Camera   |

Sometimes a decomposition is "correct"

I.e. it is a Lossless decomposition

| Name     | Price |
|----------|-------|
| Gizmo    | 19.99 |
| OneClick | 24.99 |
| Gizmo    | 19.99 |

| Name     | Category |
|----------|----------|
| Gizmo    | Gadget   |
| OneClick | Camera   |
| Gizmo    | Camera   |

## Lossy Decomposition

| Name     | Price | Category |
|----------|-------|----------|
| Gizmo    | 19.99 | Gadget   |
| OneClick | 24.99 | Camera   |
| Gizmo    | 19.99 | Camera   |

However sometimes it isn't

What's wrong here?

| Name     | Category |
|----------|----------|
| Gizmo    | Gadget   |
| OneClick | Camera   |
| Gizmo    | Camera   |

| Price | Category |
|-------|----------|
| 19.99 | Gadget   |
| 24.99 | Camera   |
| 19.99 | Camera   |

#### Lossless Decompositions



What (set) relationship holds between R1 Join R2 and R if lossless?

Hint: Which tuples of R will be present?



#### Lossless Decompositions



A decomposition R to (R1, R2) is <u>lossless</u> if R = R1Join R2

#### Lossless Decompositions



If  $\{A_1, ..., A_n\} \rightarrow \{B_1, ..., B_m\}$ Then the decomposition is lossless Note: don't need  $\{A_1, ..., A_n\} \rightarrow \{C_1, ..., C_p\}$ 

BCNF decomposition is always lossless. Why?

## A Problem with BCNF

|             | Unit  | Com | pany | Prod | uct |        |
|-------------|-------|-----|------|------|-----|--------|
|             | •••   | ••• |      | •••  |     |        |
|             |       |     |      |      |     | `      |
| <u>Unit</u> | Compa | any |      | Unit | P   | roduct |
|             | •••   |     |      | •••  | ••  | •      |

 $\{\text{Unit}\} \rightarrow \{\text{Company}\}$ 

{Unit} → {Company}
{Company,Product} → {Unit}

We do a BCNF decomposition on a "bad" FD: {Unit}+ = {Unit, Company}

We lose the FD {Company, Product}  $\rightarrow$  {Unit}!!

## So Why is that a Problem?

| <u>Unit</u><br>Galaga99<br>Bingo | Company<br>UW<br>UW | ,  | <mark>Unit</mark><br>Galaga99<br>Bingo |       | Product<br>Database<br>Database |  |
|----------------------------------|---------------------|----|----------------------------------------|-------|---------------------------------|--|
| {Unit} → {Company}               |                     |    |                                        |       |                                 |  |
| Unit Company Product             |                     |    |                                        |       |                                 |  |
| G                                | alaga99             | UW |                                        | Datał | Dases                           |  |
| B                                | ingo                | UW | JW Databases                           |       | Dases                           |  |

No problem so far. All local FD's are satisfied.

Let's put all the data back into a single table again:

Violates the FD {Company, Product}  $\rightarrow$  {Unit}!!

## The Problem

- We started with a table R and FDs F
- We decomposed R into BCNF tables  $R_1, R_2, ...$  with their own FDs  $F_1, F_2, ...$
- We insert some tuples into each of the relations—which satisfy their local FDs but when reconstruct it violates some FD across tables!

Practical Problem: To enforce FD, must reconstruct R—on each insert!

#### **Possible Solutions**

- Various ways to handle so that decompositions are all lossless / no FDs lost
  - For example 3NF- stop short of full BCNF decompositions.
- Usually a tradeoff between redundancy / data anomalies and FD preservation...

BCNF still most common- with additional steps to keep track of lost FDs...

#### 5. Other Dependencies

## Multi-Value Dependencies (MVDs)

• A multi-value dependency (MVD) is another type of dependency that could hold in our data, which is not captured by FDs

## Multi-Value Dependencies (MVDs)

• Formal definition:

Given a relation R having attribute sets A, and X, Y s.t. X, Y  $\subseteq$  A The multi-value dependency X->> Y holds on R if for any tuples t<sub>1</sub>, t<sub>2</sub> in R s.t. t<sub>1</sub>[X] = t<sub>2</sub>[X], there exists a tuple t<sub>3</sub> s.t.:  $t_1[X] = t_2[X] = t_3[X]$  $t_1[Y] = t_3[Y]$  $t_2[A \setminus Y] = t_3[A \setminus Y]$ 

| Movie theater | Film name                                          | Snack       |
|---------------|----------------------------------------------------|-------------|
| Rains 216     | Star Trek: The Wrath of Kahn                       | Kale Chips  |
| Rains 216     | Star Trek: The Wrath of Kahn                       | Burrito     |
| Rains 216     | Lord of the Rings: Concatenated & Extended Edition | Kale Chips  |
| Rains 216     | Lord of the Rings: Concatenated & Extended Edition | Burrito     |
| Rains 216     | Star Wars: The Boba Fett Prequel                   | Ramen       |
| Rains 216     | Star Wars: The Boba Fett Prequel                   | Plain pasta |

Any FDs?

| Movie theater | Film name                                          | Snack       |
|---------------|----------------------------------------------------|-------------|
| Rains 216     | Star Trek: The Wrath of Kahn                       | Kale Chips  |
| Rains 216     | Star Trek: The Wrath of Kahn                       | Burrito     |
| Rains 216     | Lord of the Rings: Concatenated & Extended Edition | Kale Chips  |
| Rains 216     | Lord of the Rings: Concatenated & Extended Edition | Burrito     |
| Rains 216     | Star Wars: The Boba Fett Prequel                   | Ramen       |
| Rains 216     | Star Wars: The Boba Fett Prequel                   | Plain pasta |

For a given movie theater... given a set of movies and snacks... Any movie/snack combination is possible!

|                | Movie theater | Film name                                          | Snack       |
|----------------|---------------|----------------------------------------------------|-------------|
| $t_1$          | Rains 216     | Star Trek: The Wrath of Kahn                       | Kale Chips  |
| t <sub>3</sub> | Rains 216     | Star Trek: The Wrath of Kahn                       | Burrito     |
|                | Rains 216     | Lord of the Rings: Concatenated & Extended Edition | Kale Chips  |
| $t_2$          | Rains 216     | Lord of the Rings: Concatenated & Extended Edition | Burrito     |
|                | Rains 216     | Star Wars: The Boba Fett Prequel                   | Ramen       |
|                | Rains 216     | Star Wars: The Boba Fett Prequel                   | Plain pasta |

| Movie theater | Film name                                          | Snack       |
|---------------|----------------------------------------------------|-------------|
| Rains 216     | Star Trek: The Wrath of Kahn                       | Kale Chips  |
| Rains 216     | Star Trek: The Wrath of Kahn                       | Burrito     |
| Rains 216     | Lord of the Rings: Concatenated & Extended Edition | Kale Chips  |
| Rains 216     | Lord of the Rings: Concatenated & Extended Edition | Burrito     |
| Rains 216     | Star Wars: The Boba Fett Prequel                   | Ramen       |
| Rains 216     | Star Wars: The Boba Fett Prequel                   | Plain pasta |

MVD holds over a relation or an instance, so must hold for every applicable pair

# Summary

- Constraints allow one to reason about the redundancy in the data
- Normal forms describe how to remove this redundancy by decomposing relations
  - By representing data appropriately, certain errors are essentially impossible